中图分类号: TB333 文献标识码: A 文献编号: 1005-1198 (2017) 01-0040-08 DOI: 10.16253/j.cnki.37-1226/tq.2016.12.005

研究论文

Ti₂SnC 原位自生 TiC_{0.5} 增强 Cu 基复合材料的 制备及压缩特性

黄振莺¹, 王雅正^{1,2}, 郝素明¹, 蔡乐平¹, 翟洪祥¹ ¹北京交通大学 机电学院材料科学与工程研究中心, 北京 100044 ²山东电力基本建设总公司, 济南 250014

摘 要:本文以 Ti₂SnC 陶瓷为先驱体,利用其高温下与 Cu 的反应原位自生 TiC_{0.5}颗粒增 强 Cu 基复合材料并研究了其压缩特性。通过差热分析、X 射线衍射和扫描电子显微镜等手段分 析了 Ti₂SnC 与 Cu 的反应行为,并探讨了制备工艺对复合材料的物相组成、增强相形貌及材料 特性的影响。结果表明,Ti₂SnC 与 Cu 在 900°C 就开始发生反应,Ti₂SnC 中的部分 Sn 原子逃 逸扩散到 Cu 基体内,留下 TiC_{0.5}作为增强相颗粒;随着温度的升高,反应程度加剧;当温度达 到 1150°C 时,Ti₂SnC 全部分解,形成亚微米 TiC_{0.5}增强 Cu(Sn)复合材料。TiC_{0.5}颗粒随保温 时间增加而更加均匀地分布在基体内。对于初始 Ti₂SnC 体积含量为 30% 的 TiC_{0.5}/Cu(Sn)复合 材料,保温时间从 0 h 增加至 2 h,其抗压强度和压缩变形率分别从 1109 MPa ± 11 MPa 和 24.4% ± 0.6% 增加到 1260 MPa ± 22 MPa 和 28.9% ± 1.1%。

关键词: Ti₂SnC; 原位自生; TiC_{0.5}/Cu 基复合材料; 压缩特性

由于具有高屈服强度、高延展性、耐磨损、抗侵蚀、易于加工成型等优点,铜基材料在军工装备、高速铁路、航空航天等领域有广泛的应用。然而,对于一般铜基材料来说,高强度与高延展性往往不能同时得到。近年来,借助于陶瓷相颗粒增强^[1]、超细晶化^[2]等手段,铜材料的强度和硬度得到了大幅度的提高。但是,这些方法往往以牺牲铜基体的塑韧性为代价^[3-6]。

对改善颗粒增强金属基复合材料塑韧性的研究已有很多尝试^[7],其中采用减小陶瓷颗粒尺寸及 原位生成陶瓷颗粒增强相而获得与金属材料的强界面结合的方法是两种比较有效的方法。但是,铜 与大部分陶瓷颗粒之间的润湿性较差^[8,9]。为此,国内外科研工作者做了大量的研究工作^[8-15]。有研

收稿日期: 2016-12-14 收到修改稿日期: 2016-12-20

基金项目: 国家自然科学基金 (51301013, 51572017); 中央高校基本科研业务费专项 (2014JBZ015); 北京实验室项目。

通讯作者: 黄振莺 (1978-), 女, 浙江诸暨人, 副教授。E-mail: zhyhuang@bjtu.edu.cn。

 $\mathfrak{R}^{[14,15]}$ 明确提出 Cu 能与非化学计量比的 TiC_x (x < 0.7) 发生润湿,并且随 x 值的减小,润湿角逐渐减小,当 x = 0.5 时,其润湿角接近 0°。因此,若以非化学计量的 TiC_x (x < 0.7) 作为增强相,则有望获得与 Cu 基体良好的界面结合,同时好的润湿性也能减少或避免颗粒团聚现象的产生,从而有利于获得均匀的材料结构。

具有纳米层状结构的三元化合物 MAX 相陶瓷近年来受到了极大的关注^[16-21]。MAX 相的化学 通式可以写为 M_{n+1}AX_n, 其中 M 为过渡金属, A 主要为 IIIA 和 IVA 族元素, X 为 C 或 N, n = 1~3。 对应于不同的 n 值 (n = 1、2 或 3) 分别构成 211、312 和 413 相。目前已合成有超过 60 种 MAX 化 合物,典型的有 Ti₃SiC₂、 Ti₃AlC₂、Ti₂AlC、Ti₂SnC 等。MAX 相化合物具有相似的晶体结构,同 属于分层的六方晶体结构 (空间群 P63/mmc),其近乎密排的各个 M 层与 A 元素层交叉, X 原子填 充 M 层之间的八面体位置, A 族元素位于具有较大空间的三方柱的中心, M₆X 八面体棱边共享。在 它们的结构中,过渡金属原子与碳或氮原子之间的结合 (即纳米尺度 MX,基团) 为强共价键,而过 渡金属原子与 A 族原子之间为弱结合,类似于层状石墨,层间由范德华力结合。由于这个原因,垂 直于 c 轴的层与层之间在外力的作用下容易发生滑动, A 元素原子更容易从其所在位置逃逸。近年 来,研究者们利用这些特有的纳米层状晶体结构、高温分解、外力溶解和氧化行为,以 MAX 相为 先驱体,制备出了更多性能优异的新型材料。例如: Naguib 等人^[22]将 Ti₃AlC₂ 粉放入 HF 中浸泡 2 h, 发现 Al 溶出, 原先 Ti₃AlC₂结构转换成二维的 Ti₃C₂层, 但仍能保持原 Ti₃AlC₂的层状结构, 他们将 发生转换后的材料称为"MXene"。之后国内外学者纷纷开展对 MXene 材料开展了研究^[23-25],认为 这种材料将可在未来代替目前电池和超级电容器中使用的电极材料。李世波等人^[26, 27]利用 MAX 相 在高温氧化环境中A层的氧化形成与基体结合良好的氧化物填充裂纹,从而达到裂纹自愈合的目的。 基于这些己有的研究,我们认为,可以选择合适的 MAX 相陶瓷作为先驱体加入到 Cu 熔体中。此 MAX 相满足两个条件: (1) Cu 与 MAX 相中的 A 位元素金属有强固溶结合力,能将 A 位原子溶出, 得到纳米 MX, 基团;(2) 纳米基团 MX, 相与 Cu 有很好的润湿性, 能作为 Cu 合金的形核剂或细化剂。 这样一来,纳米 MX_x 基团既可作为形核剂细化 Cu 基体晶粒,又能作为有效的纳米增强体增强 Cu 基复合材料,这样制备的复合材料将同时具有高强度和高延展性。

事实上,在作者之前的研究中^[28-33]已经发现,在1150°C 左右 Ti₃AlC₂与 Cu 发生反应,Al 原子向 Cu 基体中扩散导致 Ti₃AlC₂层间解离,在 Ti₃AlC₂晶粒内部形成大约 150 nm 厚的 TiC_x聚集层和 Cu-Al 层交替层叠的特殊结构,且这些 Cu-Al 层与 Ti₃AlC₂晶粒外部周围的 Cu-Al 构成网络状的材料组织结构。利用这一机制,采用 Ti₃AlC₂与 Cu 混合粉料冷压成型、无压烧结或无压浸渗的方法成功制备出了高性能的 Cu/Ti₃AlC₂金属陶瓷,其抗弯强度高达 1100 MPa 以上,且具有良好的摩擦学性能^[28-30]。利用类似机理,以 Ti₂AlC 为先驱体,作者原位制备了一种超细晶(亚微米和纳米级) TiC_{0.5}颗粒原位增强超细晶 Cu-Al 基体复合材料^[31-33],所制备的复合材料具有较高的强度和延展性,20Ti₂AlC/Cu 的抗拉强度达到498 MPa,延伸率依然有10.5%;40Ti₂AlC/Cu 的压缩强度达到1126 MPa,断裂应变依然有12.8%。

本文作为该方向系列研究内容之一,主要以 Ti₂SnC 陶瓷作为先驱体,利用其高温下与 Cu 的反应行为,原位自生 TiC_{0.5}颗粒增强 Cu 基复合材料并研究其压缩特性。分析了 Ti₂SnC 与 Cu 的反应机理,并探讨了制备工艺对复合材料的物相组成、增强相形貌及材料特性的影响。

1实验

本研究所用原料为北京试剂公司的 Cu 粉 (纯度 99.5%,颗粒粒径约 70 µm) 和 Ti₂SnC 粉。高纯度的 Ti₂SnC 采用 Ti 粉、Sn 粉和石墨粉为原料,在真空条件下无压烧结得到。将磨细后的 Ti₂SnC 粉

和 Cu 粉按体积比 30:70 均匀混合,采用热压烧结工艺在 1150°C 保温不同时间后降温,在 820°CAr 保护条件下加压 30 MPa、保温 30 min 制备得到 TiC_{0.5}/Cu(Sn) 复合材料。

为研究 Ti₂SnC 与 Cu 在高温下的反应行为,对 Ti₂SnC 和 Cu 的混合粉进行差热分析 (DSC) 实验,加热温度范围为 45°C ~ 1150°C,加热速率为 10°C/min,保护气氛为高纯氮气。采用 X 射线衍射仪 (XRD)和扫描电镜 (SEM)对 Ti₂SnC 与 Cu 在不同温度下反应产物的物相及显微结构进行观察。同时将制备得到的 TiC_{0.5}/Cu(Sn)复合材料线切割成 Φ8 mm × 12 mm 的小圆柱,经抛光、清洗、烘干等处理后进行压缩性能测试。压缩实验过程中加载速度为 0.25 mm/min,抗压屈服强度为非比例压缩应变 0.20% 处对应的应力,取四个试样的平均值作为最终结果。

图 1 Ti₂SnC 粉体的 (a) XRD 图谱和 (b) 晶粒形貌 Figure 1 (a) XRD pattern and (b) SEM image of the Ti₂SnC powders

2结果与讨论

在以 Ti 粉、Sn 粉和石墨粉为原料混合烧结制备 Ti₂SnC 粉体时,原料粉三者的比例、烧结温度 的选择和升温速率的快慢均会对 Ti₂SnC 纯度产生一定的影响,适当减少原料粉中 Sn 粉和石墨粉的 比例、设定合理的烧结温度、保证较慢的升温速率可以提高 Ti₂SnC 粉体的纯度^[34]。真空条件下,Ti 粉、Sn 粉和石墨粉以 2: 0.9: 0.85 的比例混合,在 5°C/min 的升温速率下升至 1260°C 保温 2 h 烧结 出的 Ti₂SnC 粉体纯度最高。图 1 为此工艺条件下烧结的 Ti₂SnC 粉体的 XRD 图谱和 SEM 显微结构 照片。可以看出 Ti₂SnC 粉体纯度很高,没有观察到 TiC、钛锡化合物等杂质相。Ti₂SnC 晶粒为典型 的板状晶形貌,晶粒尺寸在长度方向约为 7 μm,宽度方向约为 2 μm。

图 2 是 30 vol% Ti₂SnC 与 Cu 混合粉体的 DSC 曲线。可以看出 Ti₂SnC 和 Cu 混合粉体在 45℃~ 1150℃ 温度区间内出现了三个明显的吸热峰,对应的温度分别为 ~900℃、~1090℃ 和~1130℃,这说明混合粉在这三个温度点附近发生了一定的反应或是物相变化。在 ~900℃ 和~1130℃ 这两个温度点具体的反应或物相变化需要借助 XRD 分析和显微结构分析来进一步探究,而 ~1090℃ 温度点附近可以初步确定是与 Cu 的融化吸热有关,Cu 的熔点为 1083℃,因而在此温度点出现吸热峰。

图 3 为不同温度烧结的试样的 XRD 图谱。可以看出,在 900°C 时开始已经有部分 Ti₂SnC 发生 分解生成 TiC_{0.5} 相,随着烧结温度升高,Ti₂SnC 的衍射峰逐渐消失,取而代之的是 TiC_{0.5}的衍射峰 越来越明显。与此同时,基体 Cu 的主峰不断向左偏移,这说明 Ti₂SnC 中溢出的 Sn 原子越来越多地 固溶到 Cu 原子的晶格内。

从图 4 所示的背散射 SEM 照片可以更直观地观察到试样中 Ti₂SnC 和 Cu 二者的反应变化过程。 在初始的混合料中, 微米级的 Ti₂SnC 和 Cu 混合较均匀 [图 4 (a)], 在 900℃ 烧结后,试样中的主要 物相仍是 Ti₂SnC 和 Cu,同时出现少量的 TiC_{0.5}相 [图 4(b)],表明此时 Ti₂SnC 和 Cu 间已经发生了

图 2 Ti₂SnC-Cu 混合粉体的 DSC 分析曲线 Figure 2 DSC analysis curve of the mixed Ti₂SnC-Cu powders

图 3 不同温度烧结的 30Ti₂SnC/Cu 试样 XRD 图谱 Figure 3 The XRD patterns of the 30Ti₂SnC/Cu samples sintered at different temperatures ●: Cu(Sn); ○: TiC_{0.5}; ◆Ti₂SnC

图 4 不同温度烧结的 30Ti₂SnC-Cu 试样背散射扫描电镜照片: (a) 原始试样; (b) 900°C; (c) 1000°C; (d) c 的放大区域; (e) 1070°C; (f) 1150°C Figure 4 The backscattered SEM images of the 30Ti₂SnC-Cu samples sintered at different temperatures: (a) initial sample; (b) 900°C; (c) 1000°C; (d) enlarged location marked in the (c); (e) 1070°C; (f) 1150°C

轻微的反应,这与图 2 所示的 DSC 结果以及图 3 所示的 XRD 图谱相符。当烧结温度升高到 1000°C 后 [图 4 (c) 和图 4 (d)],虽然试样中 TiC_{0.5}相含量增多,但仍然存在明显的 Ti₂SnC 相。与 900°C 相比,此时原先较大的 Ti₂SnC 颗粒已经有部分解离,变成更细小的 Ti₂SnC 颗粒,但还是聚集在原 Ti₂SnC 颗粒周围。这与 Ti₂AlC 与 Cu 在 1000°C 时反应直接生成亚微米 TiC_{0.5} 颗粒^[33]有很大的不同,这可能与 Al 和 Cu 的固溶力大于 Sn 和 Cu 的固溶力有关。当烧结温度达到 1070°C 时,反应进一步加剧,试样中已经没有明显的 Ti₂SnC 颗粒存在,取而代之的是许多亚微米尺度的点状和长条状的 TiC_{0.5} 相 颗粒 [图 4 (e)]。当烧结温度达到 1150°C 时,试样中完全观察不到 Ti₂SnC 相存在,全部转变为亚微米的 TiC_{0.5} 颗粒,但很多亚微米 TiC_{0.5} 颗粒还聚集在原先 Ti₂SnC 颗粒的位置,分散不够均匀。延长 保温时间可能有利于 TiC_{0.5} 颗粒的更均匀分布。

从图 3 所示的 XRD 图谱中还可以看出,随 着烧结温度从 900°C 升高到 1150°C, Cu 的衍射 峰出现明显的宽化现象,这表明在此过程中 Cu 基体晶粒被明显细化。图 5 是 1150°C 制备的试 样用 HNO₃: H₂O = 1:9 的硝酸溶液腐蚀 15 min 后的扫描电镜照片。可以看出,原先微米级的 Cu 基体晶粒被细化成了亚微米尺度,这可能是 因为 Ti₂SnC 分解生成的 TiC_{0.5}颗粒起到了形核 剂的作用,减小了形核功,加速了基体晶粒的非 均匀形核,同时这些弥散分布的第二相颗粒能够 起到阻碍晶界运动从而阻碍晶粒尺寸的长大。作 者前期的研究^[28,32]也发现,Ti₃AlC₂ 分解生成的 TiC_{0.67}颗粒和 Ti₂AlC 分解生成的 TiC_{0.5}颗粒同

图 5 1150°C 无压烧结的 30 Ti₂SnC/Cu 试样在腐 蚀后基体晶粒的扫描电镜照片 Figure 5 The SEM images of the etched 30Ti₂SnC/Cu sample pressureless sintered at 1150°C

图 6 1150°C 下不同保温时间烧结的 TiC_{0.5}/Cu(Sn) 复合材料的背散射扫描电镜照片 Figure 6 The backscattered SEM images of the TiC_{0.5}/Cu(Sn) composites sintered at 1150°C with different holding time: (a) 0 h; (b) 0.5 h; (c) 2 h; (d) 4 h

样存在对 Cu 基体的晶粒细化作用。而超细的 TiC_{0.5} 颗粒增强超细 Cu 基体的复合材料也必将同时具 备高的强度和延展性。

图 6 是 1150°C 温度下分别保温 0 h、0.5 h、2 h 和 4 h 后制备的 TiC_{0.5}/Cu(Sn) 复合材料的背散射 扫描电镜照片。很明显,经过不同的保温时间后,分解生成的亚微米 TiC_{0.5}颗粒在基体内分布的均 匀程度发生了很大变化。总体来说,随着保温时间从 0 h 增加到 2 h,TiC_{0.5}/Cu(Sn) 块体复合材料内 的 TiC_{0.5}颗粒分布越来越均匀,而保温时间进一步从 2 h 增加到 4 h 时,TiC_{0.5}颗粒的分布并没有发 生明显的变化。

表1列出了1150°C 温度下分别保温0h、0.5h、2h和4h后制备的TiC_{0.5}/Cu(Sn)复合材料的压缩屈服 缩性能数据。从表中可以看出,随着保温时间从0h增加到2h,TiC_{0.5}/Cu(Sn)复合材料的压缩屈服 强度没有明显的变化,但是复合材料的抗压强度从1109 MPa±11 MPa增加到了1260 MPa±22 MPa, 压缩变形从24.4%±0.6%增加到28.9%±1.1%。保温时间增加到4h后,复合材料的压缩屈服强度 和压缩变形率与2h保温后的TiC_{0.5}/Cu(Sn)块体材料相当,但是其抗压强度没有继续增加,反而出 现了一定量的下降,相对而言保温2h后TiC_{0.5}/Cu(Sn)块体材料具有最好的压缩性能表现。这可能与 图 6 所示的增强相TiC_{0.5}颗粒的分布有一定的关系。虽然保温时间从2h增加到了4h,但是增强相 TiC_{0.5}颗粒分布均匀度并没有进一步增加,而且增强相TiC_{0.5}颗粒的尺寸随着保温时间的增加会变大, 这将导致材料压缩性能的降低。

表 1 1150°C 下保温不同时间制备的 TiC_{0.5}/Cu(Sn) 复合材料的压缩屈服强度 R_p 、压缩强度 σ_f 和压缩断裂变形率 ε_f

Holding time / h	<i>R</i> p / MPa	$\sigma_{ m f}/{ m MPa}$	$arepsilon_{ m f}$ / %
0	335 ± 15	1109 ± 11	24.4 ± 0.6
0.5	352 ± 13	1132 ± 8	23.7 ± 0.9
2	345 ± 17	1260 ± 22	28.9 ± 1.1
4	346 ± 16	1210 ± 27	29.0 ± 1.1

Table 1 The compression properties of the TiC_{0.5}/Cu(Sn) composites sintered at 1150°C for different time

3结论

(1) 以 Ti₂SnC 粉为先驱体,通过简单的烧结工艺,制备了一种超细 TiC_{0.5}颗粒原位增强超细晶 Cu(Sn) 基复合材料。

(2) Ti₂SnC 与 Cu 在 900°C 开始反应, Ti₂SnC 中的 Sn 原子逃逸扩散到 Cu 基体内, 留下超细 TiC_{0.5} 作为增强相。随着烧结温度的升高,反应程度加剧。当烧结温度达到 1150°C 时, 微米级 Ti₂SnC 全都转变成亚微米级 TiC_{0.5} 颗粒。

(3) 所制备的 TiC_{0.5}/Cu(Sn)复合材料具有较高的压缩强度和延展性。随着保温时间增加, TiC_{0.5} 增强相颗粒分布更加均匀, 压缩强度和延展性进一步提高。保温时间从 0 h 增加至 2 h, 复合材料的 抗压强度和压缩变形率分别从 1109 MPa ± 11 MPa 和 24.4% ± 0.6% 增加到 1260 MPa ± 22 MPa 和 28.9% ± 1.1%。

参考文献

[1] 刘京雷, 阮锋, 王尔德, 等. 高强度导电铜基材料的研究现状与发展前景[J]. 材料导报, 2005, 19 (7):

- [2] 卢柯, 卢磊. 金属纳米材料力学性能的研究进展[J]. 金属学报, 2000, 36 (8): 785-789.
- [3] IBRAHIM IA, MOHAMED FA, LAWERNIA EJ. Particulate reinforced metal matrix composites: a review [J]. Journal of Materials Science, 2001, 26: 1137–1156.
- [4] KOCH CC. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J]. Scripta Materialia, 2003, 49: 657–662.
- [5] TJONG SC, LAU KC. Abrasive wear behavior of TiB₂ particle-reinforced copper matrix composites [J]. Materials Science and Engineering A, 2000, 282: 183–186.
- [6] ZHU JH, LIU L, SHEN B, et al. Mechanical properties of Cu/SiC_p composites fabricated by composite electroforming [J]. Materials Letters, 2007, 61: 2804–2809.
- [7] 秦蜀懿, 张国定. 改善颗粒增强金属基复合材料塑性和韧性的途径与机制[J]. 中国有色金属学报, 2000, 10 (5): 621-629.
- [8] SANG K, WEILER L, AULBACH E. Wetting and pressureless infiltration in the CuTi/Al₂O₃ system under poor vacuum [J]. Ceramics International, 2010, 36: 719–726.
- [9] FROUMIN N, FRAGE N, POLAK M, et al. Wetting phenomena in the TiC/(Cu-Al) system [J]. Acta Materialis, 2000, 48: 1435–1441.
- [10] RADO C, DREVET B, EUSTATHOPOULOS N. The role of compound formation in reactive wetting: the Cu/SiC system [J]. Acta Materialia, 2000, 48: 4483–4491.
- [11] FRAGE N, FROUMIN N, DARIEL MP. Wetting of TiC by non-reactive liquid metals [J]. Acta Materialia, 2002, 50: 237–245.
- [12] CONTRERAS A. Wetting of TiC by Al-Cu alloys and interfacial characterization [J]. Journal of Colloid and Interface Science, 2007, 311: 159–170.
- [13] FROUMIN N, FRAGE N, AOZERNSHTEIM M, et al. Ceramic-metal interaction and wetting phenomena in the B₄C/Cu system [J]. Journal of the European Ceramic Society, 2003, 23: 2821–2828.
- [14] XIAO P, DERBY B. Wetting of titanium nitride and titanium carbide by liquid metals [J]. Acta Materialia, 1996, 44: 307–314.
- [15] HOWE JM. Bonding, structure, and properties of metal/ceramic interfaces: I, Chemical bonding, chemical reaction, and interfacial structure [J]. International Materials Reviews, 1993, 38: 233–256.
- [16] NARSOUM MW. The M_{n+1}AX_n phases: a new class of solids: thermodynamically stable nanolaminates [J]. Progress in Solid State Chemistry, 2000, 28: 201–281.
- [17] WANG JY, ZHOU YC. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides [J], Annual Review of Materials Research, 2009, 39: 415–443.
- [18] SUN ZM. Progress in research and development on MAX phases: a family of layered ternary compounds [J]. International Materials Reviews, 2011, 56: 144–166.
- [19] GUPTA S, BARSOUM MW, On the tribology of the MAX phases and their composites during dry sliding[J]. Wear, 2011, 271: 1878–1894.
- [20] HUANG ZY, ZHAI HX, GUAN ML, et al. Oxide-film-dependent tribological behaviors of Ti₃SiC₂ [J]. Wear, 2007, 262: 1079–1085.
- [21] HUANG ZY, ZHAI HX, ZHOU W, et al, Tribological behaviors and mechanisms of Ti₃AlC₂ [J]. Tribology Letters. 2007, 27 (2): 129–135.
- [22] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂ [J]. Advanced Materials, 2011, 23: 4248–4253.
- [23] LUKATSKAYA MR, MASHTALIR O, REN CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide [J]. Science, 2013, 341: 1502–1505.
- [24] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries [J]. Journal of the American Chemical Society, 2013, 135: 15966–15969.
- [25] 李正阳, 周爱国, 王李波, 等. 二维晶体 MXene 的制备与性能研究进展[J]. 硅酸盐通报, 2013, 32 (8): 1562–1566.
- [26] LI SB, SONG GM, KWAKEMAAK C, et al. Multiple crack healing of a Ti₂AlC ceramic [J]. Journal of the

第38卷

⁸⁻¹¹

European Ceramic Society, 2012, 32: 1813-1820.

- [27] LI SB, XIAO LO, SONG GM, et al. Oxidation and self-healing behavior of a fine-grained Cr₂AlC ceramic [J]. Journal of the American Ceramic Society, 2013, 96: 892–899.
- [28] HUANG ZY, BONNEVILLE J, ZHAI HX, et al. Microstructural characterization and compression properties of TiC_{0.61}/Cu(Al) composite synthesized from Cu and Ti₃AlC₂ powders [J]. Journal of Alloys and Compounds, 2014, 602: 53–57.
- [29] 黄振莺, 翟洪祥, 李萌启, 等. 原位热压反应制备高性能亚微米层状 Ti₃C₂/(Cu-Al) 金属陶瓷 [J]. 稀 有金属材料与工程, 2009, 38(增刊 2): 487–490.
- [30] 黄振莺, 王雅正, 翟洪祥, 等. 原位自生 TiC_{0.67}/Cu(Al) 复合材料的高温压缩特性及杨氏模量[J]. 稀 有金属材料与工程, 2015, 44(增刊 1): 812-815.
- [31] LI MQ, ZHAI HX, HUANG ZY, et al. Microstructure and mechanical properties of TiC_{0.5} reinforced copper matrix composites [J]. Materials Science and Engineering A, 2013, 588: 335–339.
- [32] LI MQ, ZHAI HX, HUANG ZY, et al. Tensile behavior and strengthening mechanism in ultrafine TiC_{0.5} particle reinforced Cu–Al matrix composites [J]. Journal of Alloys and Compounds, 2015, 628: 186–194.
- [33] 李萌启. 超细 TiC_{0.5} 颗粒增强超细晶 Cu-Al 基复合材料的制备与特性研究[D]. 北京: 北京交通大学 博士学位论文, 2015.
- [34] 王雅正, 黄振莺, 许浩, 等. 烧结法中影响 Ti₂SnC 粉体材料纯度的几个因素分析[J]. 稀有金属材料与 工程, 2015, 44(增刊 1): 821-824.

Fabrication and Compression Properties of TiC_{0.5}/Cu(Sn) Composites in-situ Synthesized from Cu and Ti₂SnC Powders

HUANG Zhen-Ying¹, WANG Ya-Zheng^{1,2}, HAO Su-Ming¹, CAI Le-Ping¹, ZHAI Hong-Xiang¹

¹ Centre of Materials Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
² SEPCO Electric Power Construction Corporation, Jinan250014, China

Abstract: TiC_{0.5} particle reinforced Cu matrix composite was in-situ fabricated from Ti₂SnC and Cu powders. The reaction behavior between Ti₂SnC and Cu was studied by DSC, XRD and SEM. The phases, microstructures and the compression properties of the prepared TiC_{0.5}/Cu(Sn) composites were explored. Meanwhile, the relationships among the fabrication processes, the microstructures and the compression properties of the composites were studied. The results showed that, the initial reaction temperature between Ti₂SnC and Cu is about 900°C. The reaction process shows that parts of Sn atoms in the Ti₂SnC would diffuse into Cu matrix, leaving TiC_{0.5} particles as reinforcements. The diffusion of Sn atoms and Cu atoms is intensified, and some TiC_{0.5} microcrystal begins to form within the Ti₂SnC particles as the sintering temperature increases. The distribution of TiC_{0.5} particles in the matrix would become more and more homogeneous as the holding time prolonged during sintering. Respectively, the compression strength and compression fracture strain of TiC_{0.5}/Cu(Sn) composites were improved from 1109 MPa \pm 11 MPa and 24.4% \pm 0.6% to 1260 MPa \pm 22 MPa and 28.9% \pm 1.1 %, respectively, as the holding time increased from 0 h to 2 h.

Keywords: Ti₂SnC; In-situ reaction; TiC_{0.5}/Cu composites; Compression properties